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ABSTRACT 

Let V, E, S and F be the number of vertices, edges, subfacets and facets, 
respectively, of a 4-dimensional convex polytope. In this paper we derive new 
upper and lower bounds for S in terms of F and V. 

1. Introduction 

Let P be a d-dimensional convex polytope. The vector (fo,fl,  "" , fa-  1) is said to 

be the f-vector of P provided P has exactly f~/-dimensional faces.The f-vectors of 

3-dimensional polytopes are those which satisfy the following (see [1, ch. 10]). 

(1) fo - f l  q - f 2  ---- 2 (Euler's equation) 

(2) 4 < fo < 2f2 - 4 

(3) 4 < f2 < 2fo - 4. 

The f-vectors of 4-dimensional polytopes have not been characterized, however, 

the following inequalities have been known for some time. 

(4) 2fo < f l  < ( f~ ) 

(6) fo - f l  + f 2  - -  fs = 0 (Euler's equation). 
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In this paper we shall give four new inequalities for the f-vectors of 4-dimensional 

polytopes. 

2 .  P r e l i m i n a r i e s  

From here on we shall use the term d-polytope as an abbreviation for "d- 

dimensional convex polytope", and the term k-face for "k-dimensional face". 

The terms vertex, edge, subfacet and facet will be used for 0-face, 1-face, (d - 2)- 

face and (d - 1)-face, respectively, for any d-polytope. For 4-poltyopes we shall 

use the simpler notation of V, E, S and F for f0, f l ,  f2 and fa respectively. 

In this paper we shall deal with triangulations of  2- and 3-spheres, as well as 

polytopes, as a result there are two theorems about such triangulations that we 

shall need. The first theorem is that (1), (2) and (3) are true for all triangulations of 

the 2-sphere. (This the reader may easily verify). The second is the lower bound 

theorem for triangulated 3-spheres [21: 

In any triangulation of the 3-sphere, 

F > 3V - 10 

where F is the number of 3-dimensional simplices in the triangulation and V 

is the number of vertices. 

I f~  ~" is a face o f a  d-polytope P, we shall define a diagonal of~"  to be a segment 

joining two vertices o f ~  that are not joined by an edge of.~-. Note that a diagonal 

of ~- is also a diagonal of P. 

In view of (6) characterizing the f-vectors of 4-polytopes is equivalent to 

characterizing the triples (V, S, F). These triples form a subset of  the lattice points 

in E 3. In order to facilitate the drawing of diagrams, we shall consider cross 

sections of this subset determined by fixing the value of V. If  we examine what (4) 

and (5) tell us about each cross section we find that 

F 2 --  F 
S < ~  

- 2 
(7) 

(8) S > 2F 

V 2 - 3V + 2F 
(9) S < 

- 2 

(10) S > V + F. 

The inequalities (7) and (8) are merely restatements of (5). Inequality (9) is 
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found by taking the dual of (7), E < (V 2 - V)/2, and substituting V + S - F for 

E. Inequality (10) follows from (8) in the same way. 

In Fig. 1 we indicate the region defined by these inequalities for a typical value 

of K 

$=2F 

F2"F ' Z 
S" T 

Fig. 1 

When one tries to find polytopes with the triples (V, S, F) occuring in this region 

one seems to be able to fill out only a significantly smaller region (indicated by the 

crosshatched region in Fig. 1). 

Although our new inequalities will not characterize the f-vectors of 4-dimension- 

al polytopes, we shall see that they are better than the previously known unequal- 

ities, and that they define a region whose shape is much closer to the shape of the 

experimentally obtained cross sections of the set off-vectors. 

LEMMA 1. I f  P is a 3-polytope with i facets then P has at least (i 2 - 6i + 8)/8 

diagonals. 

PROOF. For each 2-face of P with n vertices, n > 3, we add n - 3 diagonals 

across that 2-face. In this way we have produced a triangulation T of the 2-sphere. 
I f  k is the number of diagonals we have added, then T has i + k triangles 

(i + k + 4)/2 vertices and 3 ( /+  k)/2 edges. This triangulation will then have 

I i + k + 41 
2 3(k + i) i2 + k 2 + 8 - 6i + 2ik + 2k 

t. 2 J - 2 + k =  8 
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diagonals. For  any fixed i this expression has minimum value when k = 0 ,  thus we 

have at least ( i  2 - -  6i + 8)/8 diagonals. 

3. The inequalities 

THEOREM 1. I f  P is a 4-polytope with 

facets respectively, then 

3F 
S<_ --+ 

- 2 

and 

PROOF. 

V, S and F vertices, subfaeets and 

V z - 3V 
4 

V F z + F  
S <  - - + ~  

2 4 

Let Pi be the number of facets of  P that have i subfacets. Observing 

that each 5 subfaceted facet has at least one diagonal, we use the following sum 

to count diagonals of  P:  

(11) Ps + y~ ~ i 2 - 6 i  + 8~ Pi- 
~_->6 \ 8 ! 

This sum adds up lower bounds on the number of  diagonals of  each facet. It is 

possible that some diagonals are counted twice by this sum, namely those which 

are diagonals of subfacets and are thus diagonals of  two facets. 

If  we count diagonals of  an n-gon on some facet we will count at most n - 3 of 

them. However, each n-gon, n > 3, clearly has more than twice this number of 

diagonals; thus there will be no error  due to double counting and (11) is a lower 

bound on the number of  diagonals of  P. That is 

(12) P s + , ~  ( / 2 - 6 8 + 8 ) p l  < ( V )  
�9 2 - E .  

We also know that 

(13) S = �89 ]~ ipi 
i_>_4 

(14) p~ > 0 for all i. 

(15) Z p; = F 

We shall combine (13) and (15) to get 

(16) 2S = 4F + ~ (i - 4)p~. 
i__>5 
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Now we examine the folIowing linear program: What  is the maximum value of  

2S, as expressed in (16), subject to (12) and (14)? We shall consider F, V and E 

to be constants while the pt's are our variables. The feasible region of  this program 

will be a polytope in some Euclidean space with a vertex at the origin and vertices 

on each of  the coordinate axes. To find the maximum we examine the function 

4F + ~i>=~ ( i -  4)p i at each vertex. 

Case I. The vertex is the origin. 

In this case each p~ = 0, i > 5 and 2S = 4F. 

Case II. A vertex on a coordinate axis. 

In this case all but one Pi = 0 for  i > 5. 

Case IIa. Ps ~ O. 

The value of  2S is 4F+p5.  From ( 1 2 ) w e  have p s <  ( 2 ) - E .  Thus 

2S < 4F + 2 

Case lib. P5 = O, Pi ~ 0 for some i > 5. 

The value of  2S is 4F + (i - 4)pi, 

f rom (12) we have Pi =< i2 _ 6i + 8 - ' 

thus 2S 
8 

< 4 F + ( i - 4 )  i 2 _ 6 i +  8 2 

< 4F+(~-Z--~) - E  < 4 F  + 2 2 

2S =< 4 F + V  2 - V - 2 ( V + S - F )  

4S -< 6 F + V  2 - 3 V  

3F V 2 - 3V 
S < + 

2 4 

The second inequality follows by duality. Substituting V for F, F for V, S for E 

and E for  S we have 

3 V F 2 - 3F 
E < --~-- + 4 

Eliminating E using Euler 's equation gives 

(v)  We conclude that for  all values of  the p~'s, 2S < 4F + 2 2 - 2E. 

Substituting for  E using Euler 's equation we obtain 
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V F2 + F  
s < -T-+ ~ 

THEOREM 2. For all 4-dimensional polytopes P, 

3 V -  10 + 15F 7V - 10 + l l F  
S >- and S >= 

- 8 8 

PROOF. We divide each n-gonal subfacet of  P into n - 3 triangles by adding 

diagonals across the n-gon. This triangulates the boundaries of  the facets. Inside 

each of these facets we place a new vertex v and then fill out the facet with simplices 

of  the form con [-{v} td o~], where o~ is a 2-dimensional face of  the facet. In this 

way we have created a triangulation T of the 3-sphere. Let F* be the number  of  

tetrahedra of  T. 

We shall now find an upper bound on F*. Let us consider any facet of  P with i 

subfacets. By (2) we have that the facet has at most 2i - 4 vertices and by (3) we 

have that the facet will have at most 2(2i - 4) - 4 triangles when its boundary  is 

triangulated. 

Now we have that 

(17) F* < ~ ( 4 i -  12)p, 

where p~ is the number  of  facets of  P with i subfacets. But 

(4i - 12)p~ = 4~ip~ - 12~gpi = 8S - 12F. 
i=>4 

Using the lower bound theorem for triangulated 3-spheres [-2] we also have 

(18)  F *  > 3 ( F  + V)  - 10. 

Combining (17) and (18) we have 

3V - 10 + 15F. 
S >  

- 8 

The second inequality is obtained by dualizing and substituting V + S - F for  E. 

Easy calculation shows that our upper bounds provide better bounds on S than 

(7) and (9) for  all values that F can have. Our lower bounds are better than (8) and 

(10) for  (V + 10)/3 < F < 3V - 10. Figure 2 shows the region now defined by 

all of  our inequalities. 
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S=2F 

3V-tO§ 
8 

, S= ffF'- ~80"/" 7V 

V+F 

4 

Fig. 2 

These inequalities still do not characterize the f-vectors of  4-polytopes. For  

example the vector (9,25,32, 16) satisfies the inequalities yet any polytope with 

this f-vector would be a simplicial polytope that contradicts the lower bound 

theorem. One can also find other, less obvious examples to show that our lower 

bounds are not sharp. The author has not been able to prove that the upper 

bound are not sharp. 

To give an idea of  how the cross sectional regions determined by these bounds 

compare with f-vectors that the author has been able to find, we give a diagram 

of the region and the f-vectors for V = 9 (Fig. 3). The dark border lines are the 

boundaries determined by our inequalities. The shaded area represents the 

f-vectors that the author has been able to find. 
In general, the upper bounds seem to be sharp only for very large and very 

small values of  F. 

One can show that the bound S _-> 2F is sharp for F _>_ 3V - 10, and dually, 

S _>_ F is sharp for F __< (V - 10)/3. The lower bounds S __> ( l l F  - 10 + 71/)/8 

and S _-> (3V - 10 + 15)/8 do not appear to be sharp for very many values of  F. 

The author conjectures that S _-> (3V - 10 + 7F)/4 and that this is a sharp bound 

for most values of  F. 
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